Decide if the function is an exponential function. If it is, state the initial value and the base.

1)
$$y = -9.4 \cdot 6^{X}$$

Compute the exact value of the function for the given x-value without using a calculator.

2)
$$f(x) = \left(\frac{1}{4}\right)^{x}$$
 for $x = 3$

3)
$$f(x) = 5^x$$
 for $x = -2$

Determine a formula for the exponential function.

 $\begin{array}{c|cc}
x & f(x) \\
\hline
-2 & 80 \\
-1 & 40 \\
0 & 20 \\
1 & 10
\end{array}$

5

Describe the transformation of f(x) from g(x).

5)
$$f(x) = 3x-1 - 3$$
; relative to $g(x) = 3x$

State whether the function is an exponential growth function or exponential decay function, and describe its end behavior using limits.

6)
$$f(x) = 0.7^{x}$$

Decide whether the function is an exponential growth or exponential decay function and find the constant percentage rate of growth or decay.

7)
$$f(x) = 87 \cdot 0.04^{x}$$

8)
$$f(x) = 8.4 \cdot 1.04^{X}$$

Find the exponential function that satisfies the given conditions.

9) Initial value = 34, increasing at a rate of 13% per year

Evaluate the logarithm.

- 10) log4 256
- 11) $\log_6(\frac{1}{36})$

Simplify the expression.

Solve the equation by changing it to exponential form.

14)
$$\log_9 x = 4$$

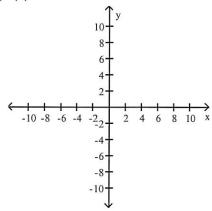
15)
$$\log x = 2.7$$

Find the logistic function that satisfies the given conditions.

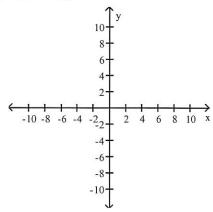
16) Initial value =10, limit to growth =60, passing through (1,20)

Sketch the graph of the function.

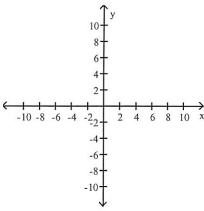
17)
$$f(x) = 2x - 1$$



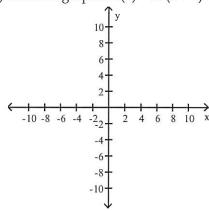
18)
$$f(x) = log_2 x$$



19)
$$f(x) = \frac{10}{1 + 2 \cdot 0.4^{X}}$$



20) Sketch a graph of
$$f(x) = \ln(x + 4)$$



Describe how to transform the graph of the basic function g(x) into the graph of the given function f(x).

21)
$$f(x) = \ln(x + 5) - 8$$
; $g(x) = \ln x$

Assuming all variables are positive, use properties of logarithms to write the expression as a sum or difference of logarithms or multiples of logarithms.

$$23) \log_{5} \left(\frac{x^{7} y^{9}}{2} \right)$$

Use the product, quotient, and power rules of logarithms to rewrite the expression as a single logarithm. Assume that all variables represent positive real numbers.

25)
$$5\log x + 4\log y$$

Find the exact solution to the equation.

26)
$$\log_{10}(x-3) = -1$$

27) 9
$$\ln(x-5)=1$$

28)
$$9^{7x} = 81$$

$$29)\ 100\left(\frac{1}{5}\right)^{x/2} = 4$$

Solve the equation.
30)
$$\log 2x = \log 5 + \log (x - 2)$$

31)
$$\log (4 + x) - \log (x - 3) = \log 4$$

$$32) \ \frac{1000}{1 + 99e^{-0.3t}} = 250$$

Use a calculator to find an approximate solution to the equation.

33)
$$2^{x} = 17$$

34)
$$e^{-0.15t} = 0.22$$

35)
$$6\ln(x + 2.8) = 9.6$$

Solve the problem.

- 36) Suppose the amount of a radioactive element remaining in a sample of 100 milligrams after x years can be described by $A(x) = 100e^{-0.01022x}$. How much is remaining after 41 years? Round the answer to the nearest hundredth of a milligram.
- 37) There are currently 80 million cars in a certain country, increasing by 7.1% annually.
 - a) Write an exponential function that models the situaiton.
 - b) How many years will it take for this country to have 94 million cars? Solve algebraically and round to the nearest year.

- 38) The number of students infected with the flu on a college campus after t days is modeled by the function $P(t) = \frac{120}{1 + 19e^{-0.4t}}.$ What was the initial number of infected students?
- 39) The number of students infected with the flu on a college campus after t days is modeled by the function $P(t) = \frac{120}{1 + 19e^{-0.4t}}$. What is the maximum number of infected students possible?
- 40) The number of students infected with the flu on a college campus after t days is modeled by the function $P(t) = \frac{120}{1 + 19e^{-0.4t}}$. When will the number of infected students be 220?